High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter.

نویسندگان

  • Yan Zhang
  • Yongqiang Ning
  • Li Qin
  • Ye Wang
  • Jinjiang Cui
  • Guangyu Liu
  • Xing Zhang
  • Zhenfu Wang
  • Yanfang Sun
  • Yun Liu
  • Lijun Wang
چکیده

A 980 nm bottom-emitting vertical-cavity surface-emitting laser (VCSEL) with a p-contact diameter is reported to achieve high power and good beam quality. A numerical simulation is conducted on the current spreading in a VCSEL with oxidation between the active region and the p-type distributed Bragg reflector. It is found that, for a particular oxide aperture diameter, somewhat homogeneous current distribution can be achieved for a VCSEL with an optimized p-contact diameter. The far-field divergence angle from a 600 microm diameter VCSEL is suppressed from 30 degrees to 15 degrees, and no strong sidelobe is observed in the far-field pattern by using the optimized p-contact diameter. There is a slight rise in threshold and optical output power that is due to the p-contact optimization. By improving the device packaging method, the maximum optical output power of the device is 2.01 W.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)

Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...

متن کامل

A high power InGaAs/GaAsP vertical-cavity surface-emitting laser and its temperature characteristics

A high power bottom-emitting InGaAs/GaAsP vertical-cavity surface-emitting laser with a large aperture (400 μm diameter) is described. The device has been fabricated by using oxidation confinement technology. The device threshold current is 610 mA, and the maximum output power is up to the watt regime (1.42 W) at room temperature (24 ◦C) with a pulse condition (pulse width of 50 μs, repetition ...

متن کامل

High-power single-mode vertical-cavity surface-emitting lasers

Articles you may be interested in Optimal photonic-crystal parameters assuring single-mode operation of 1300 nm AlInGaAs vertical-cavity surface-emitting laser Single-mode 1.27 μ m InGaAs vertical cavity surface-emitting lasers with temperature-tolerant modulation characteristics Appl. High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure Appl. Theory of...

متن کامل

High Power Pulsed Intra-Cavity Frequency Doubled Vertical Extended Cavity Blue Laser Arrays

Electrically pumped vertical cavity surface emitting lasers (VCSELs) can produce hundreds of mW's of 976 nm CW output in a TEM00 mode when operated with an external cavity configuration. During pulsed operation (<50ns) a significant increase in the peak power is observed, compared to CW operation. High peak powers makes these lasers very well suited for intra-cavity frequency doubling with a no...

متن کامل

Comparison of Wavelength Splitting for Selectively Oxidized, Ion Implanted, and Hybrid Vertical-Cavity Surface-Emitting Lasers

The wavelength splitting between the LP01 and LP11 modes of selectively oxidized, ion implanted, and hybrid ion implanted/selectively oxidized vertical-cavity surface-emitting lasers is studied by experiment and theory. Measured splittings at threshold show marked differences between the different laser structures due to the effects of index guiding and thermal lensing. Theoretical results were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 49 19  شماره 

صفحات  -

تاریخ انتشار 2010